Droplets Sliding down a Vertical Surface under Increasing Horizontal Forces. Academic Article uri icon

abstract

  • We have investigated the retention forces of liquid drops on rotating, vertical surfaces. We considered two scenarios: in one, a horizontal, centrifugal force pushes the drop toward the surface (?pushed drop? case), and in the other, a horizontal, centrifugal force pulls the drop away from the surface (?pulled drop? case). Both drops slide down as the centrifugal force increases, although one expects that the pushed drop should remain stuck to the surface. Even more surprising, when the centrifugal force is low, the pushed drop moves faster than the pulled drop, but when the centrifugal force is high, the pushed drop moves much slower than the pulled drop. We explain these results in terms of interfacial modulus between the drop and the surface.

published proceedings

  • Langmuir

author list (cited authors)

  • Tang, S., Bhimavarapu, Y., Gulec, S., Das, R., Liu, J., N Guessan, H., ... Tadmor, R.

citation count

  • 23

complete list of authors

  • Tang, Sirui||Bhimavarapu, Yagnavalkya||Gulec, Semih||Das, Ratul||Liu, Jie||N Guessan, Hartmann||Whitehead, Taylor||Yao, Chun-Wei||Tadmor, Rafael

publication date

  • June 2019