Non-Destructive Identification of Dyes on Fabric Using Near-Infrared Raman Spectroscopy. Academic Article uri icon

abstract

  • Fabric is a commonly found piece of physical evidence at most crime scenes. Forensic analysis of fabric is typically performed via microscopic examination. This subjective approach is primarily based on pattern recognition and, therefore, is often inconclusive. Most of the fabric material found at crime scenes is colored. One may expect that a confirmatory identification of dyes can be used to enhance the reliability of the forensic analysis of fabric. In this study, we investigated the potential of near-infrared Raman spectroscopy (NIRS) in the confirmatory, non-invasive, and non-destructive identification of 15 different dyes on cotton. We found that NIRS was able to resolve the vibrational fingerprints of all 15 colorants. Using partial-squared discriminant analysis (PLS-DA), we showed that NIRS enabled ~100% accurate identification of dyes based on their vibrational signatures. These findings open a new avenue for the robust and reliable forensic analysis of dyes on fabric directly at crime scenes. Main conclusion: a hand-held Raman spectrometer and partial least square discriminant analysis (PLS-DA) approaches enable highly accurate identification of dyes on fabric.

published proceedings

  • Molecules

author list (cited authors)

  • Peterson, M., & Kurouski, D.

complete list of authors

  • Peterson, Mackenzi||Kurouski, Dmitry

publication date

  • November 2023

publisher