Distinctive aerosol-cloud-precipitation interactions in marine boundary layer clouds from the ACE-ENA and SOCRATES aircraft field campaigns Institutional Repository Document uri icon

abstract

  • Abstract. The aerosol-cloud-precipitating interaction within the cloud-topped Marine Boundary Layer (MBL), are being examined using aircraft in-situ measurements from Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) and Southern Ocean Clouds Radiation Aerosol Transport Experimental Study (SOCRATES) field campaigns. SOCRATES clouds have a larger number of smaller cloud droplets compared to ACE-ENA summertime and wintertime clouds. The ACE-ENA clouds, especially in wintertime, exhibit pronounced drizzle formation and growth, attributed to the strong in-cloud turbulence that enhances the collision-coalescence process. Furthermore, the Aerosol-Cloud Interaction (ACI) indices from the two aircraft field campaigns suggest distinct sensitivities. The aerosols during ACE-ENA winter are more likely to be activated into cloud droplets due to more larger aerosols and strong vertical turbulence. The enriched aerosol loading during SOCRATES generally leads to smaller cloud droplets competing for available water vapor and exhibiting a stronger ACI. The ACI calculated near the cloud base was noticeably larger than the layer-mean and near-cloud-top, owing to the closer connection between the cloud layer and sub-cloud aerosols. Notably, the sensitivities of cloud base precipitating rates to cloud-droplet number concentrations are more pronounced during the ACE-ENA than during the SOCRATES campaigns. The in-cloud drizzle evolutions significantly alter sub-cloud cloud condensation nuclei (CCN) budgets through the coalescence-scavenging effect, and in turn, impact the ACI assessments. The results of this study can enhance the understanding and aid in future model simulation and assessment of the aerosol-cloud interaction.

altmetric score

  • 0.5

author list (cited authors)

  • Zheng, X., Dong, X., Xi, B., Logan, T., & Wang, Y.

citation count

  • 0

complete list of authors

  • Zheng, Xiaojian||Dong, Xiquan||Xi, Baike||Logan, Timothy||Wang, Yuan

Book Title

  • EGUsphere

publication date

  • November 2023