An asymmetry in wave scaling drives outsized quantities of coastal wetland erosion.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Wetland shorelines around the world are susceptible to wave erosion. Previous work has suggested that the lateral erosion rate of their cliff-like edges can be predicted as a function of intercepting waves, and yet numerous field studies have shown that other factors, for example, tidal currents or mass wasting of differing soil types, induce a wide range of variability. Our objective was to isolate the unique effects of wave heights, wavelengths, and water depths on lateral erosion rates and then synthesize a mechanistic understanding that can be applied globally. We found a potentially universal relationship, where the lateral erosion rates increase exponentially as waves increase in height but decrease exponentially as waves become longer in length. These findings suggest that wetlands and other sheltered coastlines likely experience outsized quantities of erosion, as compared to oceanic-facing coastlines.