Effect of fatty acids on physical properties of microsomes from isolated perfused rat liver. Academic Article uri icon

abstract

  • A computer-centered spectrofluorimeter was used to examine the physicochemical properties of hepatic microsomes and microsomal lipids obtained from isolated rat livers perfused with medium containing palmitate or oleate. The fatty acid composition and degree of unsaturation of the liver microsomal lipids reflected that the fatty acid present in the perfusate. The absorption corrected fluorescence, relative fluorescence efficiency, polarization, and fluorescence anisotropy of several fluorescent probe molecules were measured to determine if their different microenvironments may be altered by the type of fatty acid infused. The probe molecules beta--parinaric acid and 1,6-diphenyl-1,3,5-hexatriene had higher values for each of these parameters when incorporated into microsomes obtained from livers perfused with a medium containing palmitate than with oleate. The same parameters measured for cholesta-5,7,9(11)-trien-3 beta-ol and N-phenyl-1-naphthylamine were not altered. These differences appeared to be primarily due to alterations in microviscosity of the probe microenvironments since the rotational correlation time of 1,6-diphenyl-1,3,5-hexatriene was 25% lower in the microsomes from livers perfused with oleate as compared to livers perfused with palmitate. Thermal discontinuities in Arrhenius plots were noted in the intact microsomes but not in the isolated microsomal lipids with the fluorescence probe molecule beta-parinaric acid. Break points occurred at 10 degrees C and 26 degrees C for microsomes from livers perfused with palmitate and at 12 degrees C and 17 degrees C for microsomes from livers perfused with oleate containing medium. These results suggest that the physicochemical properties of liver microsomes were determined in part by the fatty acid in the perfusate.

published proceedings

  • Chem Phys Lipids

author list (cited authors)

  • Schroeder, F., & Goh, E. H.

citation count

  • 13

complete list of authors

  • Schroeder, F||Goh, EH

publication date

  • April 1980