Induction and Ferroelectric Switching of Flux Closure Domains in Strained PbTiO3 with Neural Network Quantum Molecular Dynamics.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
We have developed an extension of the Neural Network Quantum Molecular Dynamics (NNQMD) simulation method to incorporate electric-field dynamics based on Born effective charge (BEC), called NNQMD-BEC. We first validate NNQMD-BEC for the switching mechanisms of archetypal ferroelectric PbTiO3 bulk crystal and 180 domain walls (DWs). NNQMD-BEC simulations correctly describe the nucleation-and-growth mechanism during DW switching. In triaxially strained PbTiO3 with strain conditions commonly seen in many superlattice configurations, we find that flux-closure texture can be induced with application of an electric field perpendicular to the original polarization direction. Upon field reversal, the flux-closure texture switches via a pair of transient vortices as the intermediate state, indicating an energy-efficient switching pathway. Our NNQMD-BEC method provides a theoretical guidance to study electro-mechano effects with existing machine learning force fields using a simple BEC extension, which will be relevant for engineering applications such as field-controlled switching in mechanically strained ferroelectric devices.