Durable superhydrophobic coatings for stainless-steel: An effective defense against Escherichia coli and Listeria fouling in the post-harvest environment. Academic Article uri icon


  • Increasing concerns revolve around bacterial cross-contamination of leafy green vegetables via food-contact surfaces. Given that stainless-steel is among the commonly used food-contact surfaces, this study reports a coating strategy enhancing its hygiene and microbiological safety through an antifouling approach via superhydrophobicity. The developed method involves growing a nickel-nanodiamond nanocomposite film on 304 stainless-steel via electroplating and sequential functionalization of the outer surface layer with nonpolar organosilane molecules via polydopamine moieties. The resultant superhydrophobic stainless-steel surfaces had a static water contact angle of 156.31.9 with only 2.30.5 contact angle hysteresis. Application of the coating to stainless-steel was demonstrated to yield 2.30.6 log10 and 2.00.9 log10 reductions in the number of adherent gram-negative Escherichia coli O157:H7 and gram-positive Listeria innocua cells, respectively. These population reductions were shown to be statistically significant (=0.05). Coated stainless-steel also resisted fouling when contacted with contaminated romaine lettuce leaves and maintained significant non-wetting character when abraded with sand or contacted with high concentration surfactant solutions. The incorporation of superhydrophobic stainless-steel surfaces into food processing equipment used for washing and packaging leafy green vegetables has the potential to mitigate the transmission of pathogenic bacteria within food production facilities.

published proceedings

  • Food Res Int

author list (cited authors)

  • DeFlorio, W., Liu, S., Arcot, Y., Ulugun, B., Wang, X., Min, Y., Cisneros-Zevallos, L., & Akbulut, M.

complete list of authors

  • DeFlorio, William||Liu, Shuhao||Arcot, Yashwanth||Ulugun, Beril||Wang, Xunhao||Min, Younjin||Cisneros-Zevallos, Luis||Akbulut, Mustafa

publication date

  • November 2023