Sterol carrier protein-2 expression alters sphingolipid metabolism in transfected mouse L-cell fibroblasts. Academic Article uri icon

abstract

  • The influence of sterol carrier protein-2 (SCP-2) on the cellular metabolism of sphingolipids was examined in control mouse L-cells and stably transfected clones expressing the protein SCP-2. Three approaches were used to examine for differences; (1) compositional analysis of endogenous sphingolipid classes, (2) metabolism of NBD-ceramide, and (3) live cell labelling via endocytic uptake of BODIPY-sphingomyelin. SCP-2 over expression significantly altered the endogenous levels of both neutral and acidic sphingolipid classes. Among the neutral sphingolipids, expression of SCP-2 induced a 1.7-fold increase in the level of lactosylceramide (LacCer, p < 0.05) and a similar fold decrease in the level of the higher-order neutral glycosylceramides (p < 0.05). Among the acidic sphingolipids, SCP-2 resulted in a 5.2-fold decrease in the endogenous plasma membrane level of ganglioside GM1 (p < 0.03). Incubation of both control and transfected cell lines with NBD-ceramide resulted in the rapid establishment of a steady-state distribution of NBD-labelled sphingomyelin (NBD-SM) and glucosylceramide (NBD-GlcCer). In the SCP-2 expressing clones the conversion of NBD-Cer to NBD-GlcCer was 30% lower during incubation periods between 5 and 30 min (p < 0.025). Inspection of the cells by fluorescence microscopy after incubation with BODIPY labelled sphingomyelin (BODIPY-SM) revealed similar punctuated patterns with no distinguishable differences between the cell types. These results imply that SCP-2 plays a role in modulating enzymatic steps involved in metabolism of sphingolipid homeostasis.

published proceedings

  • Mol Cell Biochem

author list (cited authors)

  • Milis, D. G., Moore, M. K., Atshaves, B. P., Schroeder, F., & Jefferson, J. R.

citation count

  • 8

complete list of authors

  • Milis, Daniel G||Moore, Messiah K||Atshaves, Barbara P||Schroeder, Friedhelm||Jefferson, John R

publication date

  • February 2006