Acyl-coenzyme A binding protein expression alters liver fatty acyl-coenzyme A metabolism.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Although studies in vitro and in yeast suggest that acyl-CoA binding protein ACBP may modulate long-chain fatty acyl-CoA (LCFA-CoA) distribution, its physiological function in mammals is unresolved. To address this issue, the effect of ACBP on liver LCFA-CoA pool size, acyl chain composition, distribution, and transacylation into more complex lipids was examined in transgenic mice expressing a higher level of ACBP. While ACBP transgenic mice did not exhibit altered body or liver weight, liver LCFA-CoA pool size increased by 69%, preferentially in saturated and polyunsaturated, but not monounsaturated, LCFA-CoAs. Intracellular LCFA-CoA distribution was also altered such that the ratio of LCFA-CoA content in (membranes, organelles)/cytosol increased 2.7-fold, especially in microsomes but not mitochondria. The increased distribution of specific LCFA-CoAs to the membrane/organelle and microsomal fractions followed the same order as the relative LCFA-CoA binding affinity exhibited by murine recombinant ACBP: saturated > monounsaturated > polyunsaturated C14-C22 LCFA-CoAs. Consistent with the altered microsomal LCFA-CoA level and distribution, enzymatic activity of liver microsomal glycerol-3-phosphate acyltransferase (GPAT) increased 4-fold, liver mass of phospholipid and triacylglyceride increased nearly 2-fold, and relative content of monounsaturated C18:1 fatty acid increased 44% in liver phospholipids. These effects were not due to the ACBP transgene altering the protein levels of liver microsomal acyltransferase enzymes such as GPAT, lysophosphatidic acid acyltransferase (LAT), or acyl-CoA cholesterol acyltransferase 2 (ACAT-2). Thus, these data show for the first time in a physiological context that ACBP expression may play a role in LCFA-CoA metabolism.