Fast-Target Analysis and Hourly Variation of 60 Pharmaceuticals in Wastewater Using UPLC-High Resolution Mass Spectrometry Academic Article uri icon


  • A fast and sensitive monitoring method for trace pharmaceuticals in the environment is vital because many of these compounds are ubiquitous, persistent, and biologically active with recognized endocrine-disruption and pharmacological functions. A rapid and reliable ultra high-performance liquid chromatography combined with tandem mass spectrometry was developed in the present study to simultaneously identify, confirm, and quantify 60 target pharmaceuticals in wastewater samples. The method uses a sub-2 µm particle column for separating target compounds, which were subsequently quantified with the mass spectrometer. Using this high-throughput analysis method, a single injection could provide results within 5 min for the pharmaceuticals. All of the target compounds were analyzed by the multiple-reaction monitoring with 15-ms fast polarity switching. Both intraday and interday precision analyses indicate excellent coefficient of variability. To evaluate the performance of the method, a standard solution (100 and 1000 ng L(-1)) was spiked into complex wastewater samples. The tailing factor and peak width were also monitored and adjusted for optimizing peaks from the ultra high-performance liquid chromatograph. Of the target pharmaceuticals in wastewater of a sewage-treatment plant analyzed on an hourly basis, only 17 compounds were detected, and others were lower than the method detection limits. Acetaminophen, cimetidine, and iopromide were all detected at >1 μg L(-1), and their concentration profiles were similar to that of a nonsteroidal anti-inflammatory drug detected in wastewater. Other noticeable pharmaceuticals were sulfamethoxazole and trimethoprim. Sources of pharmaceuticals in wastewater are briefly discussed.

altmetric score

  • 0.75

author list (cited authors)

  • Hong, Y., Sharma, V. K., Chiang, P., & Kim, H.

citation count

  • 16

publication date

  • August 2015