On the mechanism of intermolecular nitrogen-atom transfer from a lattice-isolated diruthenium nitride intermediate. Academic Article uri icon


  • Catalyst confinement within microporous media provides the opportunity to site isolate reactive intermediates, enforce intermolecular functionalization chemistry by co-localizing reactive intermediates and substrates in molecular-scale interstices, and harness non-covalent host-guest interactions to achieve selectivities that are complementary to those accessible in solution. As part of an ongoing program to develop synthetically useful nitrogen-atom transfer (NAT) catalysts, we have demonstrated intermolecular benzylic amination of toluene at a Ru2 nitride intermediate confined within the interstices of a Ru2-based metal-organic framework (MOF), Ru3(btc)2X3 (btc = 1,3,5-benzenetricarboxylate, i.e., Ru-HKUST-1 for X = Cl). Nitride confinement within the extended MOF lattice enabled intermolecular C-H functionalization of benzylic C-H bonds in preference to nitride dimerization, which was encountered with soluble molecular analogues. Detailed study of the kinetic isotope effects (KIEs, i.e., kH/kD) of C-H amination, assayed both as intramolecular effects using partially labeled toluene and as intermolecular effects using a mixture of per-labeled and unlabeled toluene, provided evidence for restricted substrate mobility on the time scale of interstitial NAT. Analysis of these KIEs as a function of material mesoporosity provided approximate experimental values for functionalization in the absence of mass transport barriers. Here, we disclose a combined experimental and computational investigation of the mechanism of NAT from a Ru2 nitride to the C-H bond of toluene. Computed kinetic isotope effects for a H-atom abstraction (HAA)/radical rebound (RR) mechanism are in good agreement with experimental data obtained for C-H amination at the rapid diffusion limit. These results provide the first detailed analysis of the mechanism of intermolecular NAT to a C-H bond, bolster the use of KIEs as a probe of confinement effects on NAT within MOF lattices, and provide mechanistic insights unavailable by experiment because rate-determining mass transport obscured the underlying chemical kinetics.

published proceedings

  • Faraday Discuss

altmetric score

  • 1.5

author list (cited authors)

  • Cosio, M. N., Alharbi, W. S., Sur, A., Wang, C., Najafian, A., Cundari, T. R., & Powers, D. C.

citation count

  • 0

publication date

  • April 2023