Climate Impacts of Convective Cloud Microphysics in NCAR CAM5 Academic Article uri icon

abstract

  • Abstract We improved the treatments of convective cloud microphysics in the NCAR Community Atmosphere Model version 5.3 (CAM5.3) by 1) implementing new terminal velocity parameterizations for convective ice and snow particles, 2) adding graupel microphysics, 3) considering convective snow detrainment, and 4) enhancing rain initiation and generation rate in warm clouds. We evaluated the impacts of improved microphysics on simulated global climate, focusing on simulated cloud radiative forcing, graupel microphysics, convective cloud ice amount, and tropical precipitation. Compared to CAM5.3 with the default convective microphysics, the too-strong cloud shortwave radiative forcing due primarily to excessive convective cloud liquid is largely alleviated over the tropics and midlatitudes after rain initiation and generation rate is enhanced, in better agreement with the CERES-EBAF estimates. Geographic distributions of graupel occurrence are reasonably simulated over continents; whereas the graupel occurrence remains highly uncertain over the oceanic storm-track regions. When evaluated against the CloudSatCALIPSO estimates, the overestimation of convective ice mass is alleviated with the improved convective ice microphysics, among which adding graupel microphysics and the accompanying increase in hydrometeor fall speed play the most important role. The probability distribution function (PDF) of rainfall intensity is sensitive to warm rain processes in convective clouds, and enhancement in warm rain production shifts the PDF toward heavier precipitation, which agrees better with the TRMM observations. Common biases of overestimating the light rain frequency and underestimating the heavy rain frequency in GCMs are mitigated.

published proceedings

  • JOURNAL OF CLIMATE

altmetric score

  • 0.5

author list (cited authors)

  • Lin, L., Liu, X., Shan, Y., & Fu, Q.

citation count

  • 1

complete list of authors

  • Lin, Lin||Liu, Xiaohong||Shan, Yunpeng||Fu, Qiang

publication date

  • May 2023