Phylogenetic analysis of 5'-noncoding regions from the ABA-responsive rab16/17 gene family of sorghum, maize and rice provides insight into the composition, organization and function of cis-regulatory modules. Academic Article uri icon

abstract

  • Phylogenetic analysis of sequences from gene families and homologous genes from species of varying divergence can be used to identify conserved noncoding regulatory elements. In this study, phylogenetic analysis of 5'-noncoding sequences was optimized using rab17, a well-characterized ABA-responsive gene from maize, and five additional rab16/17 homologs from sorghum and rice. Conserved 5'-noncoding sequences among the maize, sorghum, and rice rab16/17 homologs were identified with the aid of the software program FootPrinter and by screening for known transcription-factor-binding sites. Searches for 7 of 8 (7/8)bp sequence matches within aligned 5'-noncoding segments of the rab genes identified many of the cis-elements previously characterized by biochemical analysis in maize rab17 plus several additional putative regulatory elements. Differences in the composition of conserved noncoding sequences among rab16/17 genes were related to variation in rab gene mRNA levels in different tissues and to response to ABA treatment using qRT-PCR. Absence of a GRA-like element in the promoter of sorghum dhn2 relative to maize rab17 was correlated with an approximately 85-fold reduction of dhn2 RNA in sorghum shoots. Overall, we conclude that phylogenetic analysis of gene families among rice, sorghum, and maize will help identify regulatory sequences in the noncoding regions of genes and contribute to our understanding of grass gene regulatory networks.

author list (cited authors)

  • Buchanan, C. D., Klein, P. E., & Mullet, J. E.

complete list of authors

  • Buchanan, Christina D||Klein, Patricia E||Mullet, John E

publication date

  • January 1, 2004 11:11 AM