Identification of parameters for embodied energy measurement: A literature review Academic Article uri icon

abstract

  • The building construction industry consumes a large amount of resources and energy and, owing to current global population growth trends, this situation is projected to deteriorate in the near future. Buildings consume approximately 40 percent of total global energy: during the construction phase in the form of embodied energy and during the operation phase as operating energy. Embodied energy is expended in the processes of building material production (mining and manufacture), on-site delivery, construction and assembly on-site, renovation and final demolition. Recent studies have considered the significance of embodied energy inherent in building materials, with a specific focus on this fraction of sequestered energy. Current interpretations of embodied energy are quite unclear and vary greatly, and embodied energy databases suffer from problems of variation and incomparability. Furthermore, there is no reliable template, standard or protocol regarding embodied energy computations that could address these problems in embodied energy inventories. This paper focuses on the analysis of existing literature in order to identify differing parameters so that development of a consistent and comparable database can be facilitated. © 2010 Elsevier B.V. All rights reserved.

altmetric score

  • 3

author list (cited authors)

  • Dixit, M. K., Fernández-Solís, J. L., Lavy, S., & Culp, C. H.

citation count

  • 375
  • 388

publication date

  • August 2010