Locations and functional roles of conserved lysine residues in Salmonella typhimurium orotate phosphoribosyltransferase.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Salmonella typhimurium orotate phosphoribosyltransferase (OPRTase) catalyzes the formation of orotidine 5'-monophosphate (OMP) from orotate and alpha-D-5-phosphoribosyl-1-pyrophosphate (PRPP). There are five highly conserved lysine residues (Lys-19, -26, -73, -100, and -103) in S. typhimurium OPRTase. Here, we report the results of mutagenesis and substrate analog studies to investigate the functional roles of these lysines. Together with information from X-ray crystallography [Scapin, G., Grubmeyer, C., & Sacchettini, J. C. (1994) Biochemistry 33, 1287-1294; Scapin, G., Ozturk, D. H., Grubmeyer, C., & Sacchettini, J. C. (1995) Biochemistry 34, 10744-10754], sequence comparisons, and chemical modification [Grubmeyer, C., Segura, E., & Dorfman, R. (1993) J. Biol. Chem. 268, 20299-20304], this work permits the assignment of functions of the five conserved lysines. Lys-19 is external to the active site, and its mutation to glutamine had little effect on enzyme activity. Lys-26 forms a hydrogen bond to OMP at the 3'-hydroxyl group, and its mutation produced 3-10-fold decreases in kcat. Lys-73 extends into the active site, and a conformational change allows it to interact with either the 5'-phosphate of OMP or the 2-hydroxyl and alpha-phosphoryl oxygen of PRPP in their respective substrate complexes. Mutation of Lys-73 produced a 50-100-fold decrease in kcat and an 8-12-fold increase in the KM value for PRPP. Mutation of Lys-100 produced a 5-fold decrease in kcat and a 3-fold increase in the KM for PRPP, consistent with its location within the active site, near the pyrophosphate moiety of PRPP.(ABSTRACT TRUNCATED AT 250 WORDS)