Probing the plasmon-driven Suzuki-Miyaura coupling reactions with cargo-TERS towards tailored catalysis. Academic Article uri icon

abstract

  • We present a label-free approach that is based on tip-enhanced Raman spectroscopy (TERS) for a direct in situ assessment of the molecular reactivity in plasmon-driven reactions. Using this analytical approach, named cargo-TERS, we investigate the relationship between the chemical structure of aromatic halides and the catalytic probability of the Suzuki-Miyaura coupling reaction on gold-palladium bimetallic nanoplates (Au@PdNPs). We demonstrate that cargo-TERS can be used to quantify the yield of biphenyl-4,4'-dithiol (BPDT), the product of the coupling reaction. Our results also show that the halide reactivity decreases from bromo through chloro to fluorohalides. Finally, we employ this novel imaging technique to unravel the nanoscale reactivity and selectivity of Au@PdNPs. We find that the edges and corners of these nanostructures exhibit the highest catalytic reactivity, while the flat terraces of Au@PdNPs remain catalytically inactive.

published proceedings

  • Nanoscale

author list (cited authors)

  • Li, Z., & Kurouski, D.

citation count

  • 8

publication date

  • July 2021