Ability of 15-hydroxyeicosatrienoic acid (15-OH-20:3) to modulate macrophage arachidonic acid metabolism. Academic Article uri icon


  • Mouse peritoneal macrophages metabolize dihomogammalinolenic acid (20:3n-6) primarily to 15-hydroxy-8,11,13-eicosatrienoic acid (15-OH-20:3). Since the biological properties of this novel trienoic eicosanoid remain poorly defined, the effects of increasing concentrations of 15-OH-20:3 and its arachidonic acid (20:4n-6) derived analogue. 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE), on mouse macrophage 20:4n-6 metabolism were investigated. Resident peritoneal macrophages were prelabeled with [3H]-20:4n-6 and subsequently stimulated with zymosan in the presence of either 15-OH-20:3 or 15-HETE (1-30 microM). After 1 hr, the radiolabeled soluble metabolites were analyzed by reverse phase high performance liquid chromatography. 15-OH-20:3 inhibited zymosan-induced leukotriene C4 (IC50 = 2.4 microM) and 5-HETE (IC50 = 3.1 microM) synthesis. In contrast to the inhibition of macrophage 5-lipoxygenase, 15-OH-20:3 enhanced 12-HETE synthesis (5-30 microM) and had no measurable effect on cyclooxygenase metabolism (1-10 microM) i.e., 6-keto-prostaglandin F1 alpha and prostaglandin E2 synthesis. Addition of exogenous 15-HETE produced similar effects. These results suggest that the manipulation of macrophage 15-OH-20:3n-6 levels may provide a measure of cellular control over 20:4n-6 metabolism, specifically, leukotriene production.

published proceedings

  • Biochem Biophys Res Commun

altmetric score

  • 3

author list (cited authors)

  • Chapkin, R. S., Miller, C. C., Somers, S. D., & Erickson, K. L.

citation count

  • 33

complete list of authors

  • Chapkin, RS||Miller, CC||Somers, SD||Erickson, KL

publication date

  • June 1988