Relationship between DNA adduct levels, repair enzyme, and apoptosis as a function of DNA methylation by azoxymethane.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
DNA alkylating agent exposure results in the formation of a number of DNA adducts, with O6-methyl-deoxyguanosine (O6-medG) being the major mutagenic and cytotoxic DNA lesion. Critical to the prevention of colon cancer is the removal of O6-medG DNA adducts, either through repair, for example, by O6-alkylguanine-DNA alkyltransferase (ATase) or targeted apoptosis. We report how rat colonocytes respond to administration of azoxymethane (a well-characterized experimental colon carcinogen and DNA-methylating agent) in terms of O6-medG DNA adduct formation and adduct removal by ATase and apoptosis. Our results are: (a) DNA damage is greater in actively proliferating cells than in the differentiated cell compartment; (b) expression of the DNA repair enzyme ATase was not targeted to the proliferating cells or stem cells but rather is confined primarily to the upper portion of the crypt; (c) apoptosis is primarily targeted to the stem cell and proliferative compartments; and (d) the increase in DNA repair enzyme expression over time in the bottom one-third of the crypt corresponds with the decrease in apoptosis in this same crypt region.