Dietary fish oil reduces O6-methylguanine DNA adduct levels in rat colon in part by increasing apoptosis during tumor initiation.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
There is epidemiological, clinical, and experimental evidence that dietary fish oil, containing n-3 polyunsaturated fatty acids, protects against colon tumor development. However, its effects on colonocytes in vivo remain poorly understood. Therefore, we investigated the ability of fish oil to modulate colonic methylation-induced DNA damage, repair, and deletion. Sprague Dawley rats were provided with complete diets containing either corn oil or fish oil (15% by weight). Animals were injected with azoxymethane, and the distal colon was removed 3, 6, 9, or 12 h later. Targeted apoptosis and DNA damage were assessed by cell position within the crypt using the terminal deoxynucleotidyl transferase-mediated nick end labeling assay and quantitative immunohistochemical analysis of O6-methylguanine adducts, respectively. Localization and expression of the alkyl group acceptor, O6-methylguanine-DNA-methyltransferase, was also determined. Lower levels of adducts were detected at 6, 9, and 12 h in fish oil- versus corn oil-fed animals (P < 0.05). In addition, fish oil supplementation had the greatest effect on apoptosis in the top one-third of the crypt, increasing the apoptotic index compared with corn oil-fed rats (P < 0.05). In the top one-third of the crypt, fish oil feeding caused an incremental stimulation of apoptosis as adduct level increased. In contrast, a negative correlation between apoptosis and adduct incidence occurred with corn oil feeding (P < 0.05). Diet had no main effect (all tertiles combined) on O6-methylguanine-DNA-methyltransferase expression over the time frame of the experiment. The enhancement of targeted apoptosis combined with the reduced formation of O6-methylguanine adducts may account, in part, for the observed protective effect of n-3 polyunsaturated fatty acids against experimentally induced colon cancer.