Chemoprotective epigenetic mechanisms in a colorectal cancer model: Modulation by n-3 PUFA in combination with fermentable fiber. Academic Article uri icon

abstract

  • Colorectal cancer is the third major cause of cancer-related mortality in both men and women worldwide. The beneficial role of n-3 polyunsaturated fatty acids (PUFA) in preventing colon cancer is substantiated by experimental, epidemiological, and clinical data. From a mechanistic perspective, n-3 PUFA are pleiotropic and multifaceted with respect to their molecular mechanisms of action. For example, this class of dietary lipid uniquely modulates membrane and nuclear receptors, sensors/ion channels, and membrane structure/cytoskeletal function, thereby regulating signaling processes that influence patterns of gene expression and cell phenotype. In addition, n-3 PUFA can synergize with other potential chemoprotective agents known to reprogram the chromatin landscape, such as the fermentable fiber product, butyrate. Nutri-epigenomics is an emerging field of research that is focused on the interaction between nutrition and epigenetics. Epigenetics refers to a group of heterogeneous processes that regulate transcription without changing the DNA coding sequence, ranging from DNA methylation, to histone tail modifications and transcription factor activity. One implication of the nutri-epigenome is that it may be possible to reprogram epigenetic marks that are associated with increased disease risk by nutritional or lifestyle interventions. This review will focus on the nutri-epigenomic role of n-3 PUFA, particularly DHA, as well as the combinatorial effects of n-3 PUFA and fermentable fiber in relation to colon cancer.

published proceedings

  • Curr Pharmacol Rep

altmetric score

  • 0.75

author list (cited authors)

  • Triff, K., Kim, E., & Chapkin, R. S.

citation count

  • 20

complete list of authors

  • Triff, Karen||Kim, Eunjoo||Chapkin, Robert S

publication date

  • February 2015