Separation performance of single-stranded DNA electrophoresis in photopolymerized cross-linked polyacrylamide gels. Academic Article uri icon


  • Considerable effort has been directed toward optimizing performance and maximizing throughput in ssDNA electrophoresis because it is a critical analytical step in a variety of genomic assays. Ultimately, it would be desirable to quantitatively determine the achievable level of separation resolution directly from measurements of fundamental physical properties associated with the gel matrix rather than by the trial and error process often employed. Unfortunately, this predictive capability is currently lacking, due in large part to the need for a more detailed understanding of the fundamental parameters governing separation performance (mobility, diffusion, and dispersion). We seek to address this issue by systematically characterizing electrophoretic mobility, diffusion, and dispersion behavior of ssDNA fragments in the 70-1,000 base range in a photopolymerized cross-linked polyacrylamide matrix using a slab gel DNA sequencer. Data are collected for gel concentrations of 6, 9, and 12%T at electric fields ranging from 15 to 40 V/cm, and resolution predictions are compared with corresponding experimentally measured values. The data exhibit a transition from behavior consistent with the Ogston model for small fragments to behavior in agreement with the biased reptation model at larger fragment sizes. Mobility data are also used to estimate the mean gel pore size and compare the predictions of several models.

published proceedings

  • Electrophoresis

author list (cited authors)

  • Lo, R. C., & Ugaz, V. M.

citation count

  • 15

complete list of authors

  • Lo, Roger C||Ugaz, Victor M

publication date

  • February 2006