Using microchip gel electrophoresis to probe DNA-drug binding interactions.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Binding of small molecules with DNA plays an important role in many biological functions such as DNA replication, repair, and transcription. These interactions also offer enormous potential as targets for diagnostics and therapeutics, leading to intense interest in development of methods to probe the underlying binding events. In this chapter, we present a new approach to investigate the structural changes that accompany binding of DNA and small molecules. Instead of relying on conventional yet delicate single-molecule imaging methods, we show how a single microchip gel electrophoresis experiment incorporating both constant electric field and on-off actuation over a specific frequency range enables fundamental structural parameters (e.g., contour and persistence lengths) to be simultaneously determined. The microchip format offers an attractive combination of simplicity and scale-up potential that makes it amenable for high-throughput screening.