Seasonal and Scale Size Relationships between Citricola Scale (Homoptera: Coccidae) and Its Parasitoid Complex (Hymenoptera: Chalcidoidea) on San Joaquin Valley Citrus Academic Article uri icon

abstract

  • The phenology of citricola scale, Coccus pseudomagnoliarum (Kuwana), and its associated parasitoid complex were studied on citrus in the San Joaquin Valley of central California over the period April 1995-March 1997. A total of 10,237 parasitoid specimens of 10 species were collected. Two of these species, Marietta mexicana (Howard) and Encyrtus lecaniorum (Mayr), each recovered from individually isolated scales, represent new parasitoid records for citricola scale. A third species, Encarsia citrinus citrinus (Craw), may represent a new parasitoid record, but this requires further confirmation because a single (male) specimen was recovered from individually isolated scales. The three most dominant parasitoid species, Coccophagus lycimnia (Walker), Metaphycus helvolus (Compere), and Metaphycus luteolus lake), accounted for the majority (>97%) of the specimens recovered. In contrast to the situation on citrus in southern California, where citricola scale is under effective biological control and is very rarely seen, citricola scale on citrus in the San Joaquin Valley is reemerging as a major pest, especially in groves employing integrated pest management with minimal use of broad-spectrum insecticides. Possible reasons uncovered in this study for the lack of effective biological control of citricola scale in the San Joaquin Valley include: (i) reduced presence of Metaphycus spp. because of hyperparasitism by the heteronomous hyperparasitoid C. lycimnia; (ii) absence of alternate hosts for those species of Metaphycus present; and (iii) absence of hosts of suitable size for Metaphycus at critical times of the year. Recommendations for improving the level of biological control in the San Joaquin Valley are discussed. © 2001 Academic Press.

author list (cited authors)

  • Bernal, J. S., Luck, R. F., Morse, J. G., & Drury, M. S.

citation count

  • 32

publication date

  • March 2001