Nonlinear lymphangion pressure-volume relationship minimizes edema. Academic Article uri icon

abstract

  • Lymphangions, the segments of lymphatic vessel between two valves, contract cyclically and actively pump, analogous to cardiac ventricles. Besides having a discernable systole and diastole, lymphangions have a relatively linear end-systolic pressure-volume relationship (with slope E(max)) and a nonlinear end-diastolic pressure-volume relationship (with slope E(min)). To counter increased microvascular filtration (causing increased lymphatic inlet pressure), lymphangions must respond to modest increases in transmural pressure by increasing pumping. To counter venous hypertension (causing increased lymphatic inlet and outlet pressures), lymphangions must respond to potentially large increases in transmural pressure by maintaining lymph flow. We therefore hypothesized that the nonlinear lymphangion pressure-volume relationship allows transition from a transmural pressure-dependent stroke volume to a transmural pressure-independent stroke volume as transmural pressure increases. To test this hypothesis, we applied a mathematical model based on the time-varying elastance concept typically applied to ventricles (the ratio of pressure to volume cycles periodically from a minimum, E(min), to a maximum, E(max)). This model predicted that lymphangions increase stroke volume and stroke work with transmural pressure if E(min) < E(max) at low transmural pressures, but maintain stroke volume and stroke work if E(min)= E(max) at higher transmural pressures. Furthermore, at higher transmural pressures, stroke work is evenly distributed among a chain of lymphangions. Model predictions were tested by comparison to previously reported data. Model predictions were consistent with reported lymphangion properties and pressure-flow relationships of entire lymphatic systems. The nonlinear lymphangion pressure-volume relationship therefore minimizes edema resulting from both increased microvascular filtration and venous hypertension.

published proceedings

  • Am J Physiol Heart Circ Physiol

author list (cited authors)

  • Venugopal, A. M., Stewart, R. H., Laine, G. A., & Quick, C. M.

citation count

  • 10

complete list of authors

  • Venugopal, Arun M||Stewart, Randolph H||Laine, Glen A||Quick, Christopher M

publication date

  • July 2010