Evaluating and constraining ice cloud parameterizations in CAM5 using aircraft measurements from the SPARTICUS campaign Academic Article uri icon

abstract

  • Abstract. This study uses aircraft measurements of relative humidity and ice crystal size distribution collected during the SPARTICUS (Small PARTicles In CirrUS) field campaign to evaluate and constrain ice cloud parameterizations in the Community Atmosphere Model version 5. About 200 h of data were collected during the campaign between January and June 2010, providing the longest aircraft measurements available so far for cirrus clouds in the midlatitudes. The probability density function (PDF) of ice crystal number concentration (Ni) derived from the high-frequency (1 Hz) measurements features a strong dependence on ambient temperature. As temperature decreases from 35 C to 62 C, the peak in the PDF shifts from 1020 L1 to 2001000 L1, while Ni shows a factor of 67 increase. Model simulations are performed with two different ice nucleation schemes for pure ice-phase clouds. One of the schemes can reproduce a clear increase of Ni with decreasing temperature by using either an observation-based ice nuclei spectrum or a classical-theory-based spectrum with a relatively low (510%) maximum freezing ratio for dust aerosols. The simulation with the other scheme, which assumes a high maximum freezing ratio (100%), shows much weaker temperature dependence of Ni. Simulations are also performed to test empirical parameters related to water vapor deposition and the autoconversion of ice crystals to snow. Results show that a value between 0.05 and 0.1 for the water vapor deposition coefficient, and 250 m for the critical diameter that distinguishes ice crystals from snow, can produce good agreement between model simulation and the SPARTICUS measurements in terms of Ni and effective radius. The climate impact of perturbing these parameters is also discussed.

published proceedings

  • ATMOSPHERIC CHEMISTRY AND PHYSICS

author list (cited authors)

  • Zhang, K., Liu, X., Wang, M., Comstock, J. M., Mitchell, D. L., Mishra, S., & Mace, G. G.

citation count

  • 41

complete list of authors

  • Zhang, K||Liu, X||Wang, M||Comstock, JM||Mitchell, DL||Mishra, S||Mace, GG

publication date

  • May 2013