Impacts of Secondary Ice Production on Arctic Mixed-Phase Clouds based on ARM Observations and CESM2 Institutional Repository Document uri icon

abstract

  • Abstract. For decades, measured ice crystal number concentrations have been found to be orders of magnitude higher than measured ice nucleating particles in moderately cold clouds. This observed discrepancy reveals the existence of secondary ice production (SIP) in addition to the primary ice nucleation. However, the importance of SIP relative to primary ice nucleation remains highly unclear. Furthermore, most weather and climate models do not represent well the SIP processes, leading to large biases in simulated cloud properties. This study demonstrates a first attempt to represent different SIP mechanisms (frozen raindrop shattering, ice-ice collisional break-up, and rime splintering) in a global climate model (GCM). The model is run in the single column mode to facilitate comparisons with the Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Mixed-Phase Arctic Cloud Experiment (M-PACE) observations. We show the SIP importance in the four types of clouds during M-PACE (i.e., multilayer, and single-layer stratus, transition, and front clouds), with the maximum enhancement in ice crystal number concentration by up to 4 orders of magnitude in the moderately-cold clouds. We reveal that SIP is the dominant source of ice crystals near the cloud base for the long-lived Arctic single-layer mixed-phase clouds. The model with SIP improves the occurrence and phase partitioning of the mixed-phase clouds, reverses the vertical distribution pattern of ice number concentration, and provides a better agreement with observations. The findings of this study highlight the importance of considering the SIP in GCMs.

altmetric score

  • 0.25

author list (cited authors)

  • Zhao, X. i., Liu, X., Phillips, V., & Patade, S.

citation count

  • 1

complete list of authors

  • Zhao, Xi||Liu, Xiaohong||Phillips, Vaughan TJ||Patade, Sachin

Book Title

  • EGUsphere

publication date

  • December 2020