Quantifying snow darkening and atmospheric radiative effects of black carbon and dust on the South Asian monsoon and hydrological cycle: experiments using variable-resolution CESM Academic Article uri icon

abstract

  • Abstract. Black carbon (BC) and dust impart significant effects on the South Asian monsoon (SAM), which is responsible for 80% of the region's annual precipitation. This study implements a variable-resolution (VR) version of the Community Earth System Model (CESM) to quantify two radiative effects of absorbing BC and dust on the SAM. Specifically, this study focuses on the snow darkening effect (SDE), as well as how these aerosols interact with incoming and outgoing radiation to facilitate an atmospheric response (i.e., aerosolradiation interactions, ARIs). By running sensitivity experiments, the individual effects of SDE and ARI are quantified, and a theoretical framework is applied to assess these aerosols' impacts on the SAM. It is found that ARIs of absorbing aerosols warm the atmospheric column in a belt coincident with the MayJune averaged location of the subtropical jet, bringing forth anomalous upper-tropospheric (lower-tropospheric) anticyclogenesis (cyclogenesis) and divergence (convergence). This anomalous arrangement in the mass fields brings forth enhanced rising vertical motion across South Asia and a stronger westerly low-level jet, the latter of which furnishes the Indian subcontinent with enhanced Arabian Gulf moisture. Precipitation increases of 2mmd1 or more (a 60% increase in June) result across much of northern India from May through August, with larger anomalies (+5 to +10mmd1) in the western Indian mountains and southern Tibetan Plateau (TP) mountain ranges due to orographic and anabatic enhancement. Across the Tibetan Plateau foothills, SDE by BC aerosols drives large precipitation anomalies of >6mmd1 (a 21%26% increase in May and June), comparable to ARI of absorbing aerosols from April through August. Runoff changes accompany BC SDE-induced snow changes across Tibet, while runoff changes across India result predominantly from dust ARI. Finally, there are large differences in the simulated SDE between the VR and traditional 1 simulations, the latter of which simulates a much stronger SDE and more effectively modifies the regional circulation.

published proceedings

  • ATMOSPHERIC CHEMISTRY AND PHYSICS

altmetric score

  • 0.5

author list (cited authors)

  • Rahimi, S., Liu, X., Wu, C., Lau, W. K., Brown, H., Wu, M., & Qian, Y.

citation count

  • 28

complete list of authors

  • Rahimi, Stefan||Liu, Xiaohong||Wu, Chenglai||Lau, William K||Brown, Hunter||Wu, Mingxuan||Qian, Yun

publication date

  • September 2019