Kim, Joong Tae (2003-05). Enhancing the resolution of sea ice in long-term global ocean general circulation model (gcm) integrations. Doctoral Dissertation. Thesis uri icon

abstract

  • Open water in sea ice, such as leads and polynyas, plays a crucial role in determining the formation of deep- and bottom-water, as well as their long-term global properties and circulation. Ocean general circulation models (GCMs) designed for studies of the long-term thermohaline circulation have typically coarse resolution, making it inevitable to parameterize subgrid-scale features such as leads and convective plumes. In this study, a hierarchy of higher-resolution sea-ice models is developed to reduce uncertainties due to coarse resolution, while keeping the ocean component at coarse resolution to maintain the efficiency of the GCM to study the long-term deep-ocean properties and circulation. The higher-resolved sea-ice component is restricted to the Southern Ocean. Compared with the coarse sea-ice model, the intermediate, higher-resolution version yields more detailed coastal polynyas, a realistically sharp ice edge, and an overall enhanced lead fraction. The latter gives enhanced rates of Antarctic Bottom Water formation through enhanced near-boundary convection. Sensitivity experiments revealed coastal katabatic winds accounted for in the higher resolution version, are the main reason for producing such an effect. For a more realistic coastline, satellite passive-microwave data for fine-grid land/ice-shelf ?????? seaice/ ocean boundary were used. With a further enhancement of the resolution of the Southern Ocean??????s sea-ice component, a grid spacing of 22 km is reached. This is about the size of the pixel resolution of satellite-passive microwave data from which ice concentration is retrieved. This product is used in this study to validate the sea-ice component of the global ocean GCM. The overall performance of the high-resolution sea-ice component is encouraging, particularly the representation of the crucial coastal polynyas. Enhancing the resolution of the convection parameterization reduces spurious coarse-grid polynyas. Constraining the upper-ocean temperature and modifying the plume velocity removes unrealistic small-scale convection within the ice pack. The observed highfrequency variability along the ice edge is to some extent captured by exposing the ice pack to upper-ocean currents that mimic tidal variability. While these measures improve several characteristics of the Southern Ocean sea-ice pack, they deteriorate the global deepocean properties and circulation, calling for further refinements and tuning to arrive at presently observed conditions.
  • Open water in sea ice, such as leads and polynyas, plays a crucial
    role in determining the formation of deep- and bottom-water, as well
    as their long-term global properties and circulation. Ocean general
    circulation models (GCMs) designed for studies of the long-term
    thermohaline circulation have typically coarse resolution, making it
    inevitable to parameterize subgrid-scale features such as leads and
    convective plumes. In this study, a hierarchy of higher-resolution
    sea-ice models is developed to reduce uncertainties due to coarse
    resolution, while keeping the ocean component at coarse resolution to
    maintain the efficiency of the GCM to study the long-term deep-ocean
    properties and circulation. The higher-resolved sea-ice component is restricted to the Southern Ocean. Compared with the coarse sea-ice
    model, the intermediate, higher-resolution version yields more
    detailed coastal polynyas, a realistically sharp ice edge, and an
    overall enhanced lead fraction. The latter gives enhanced rates of
    Antarctic Bottom Water formation through enhanced near-boundary
    convection. Sensitivity experiments revealed coastal katabatic winds
    accounted for in the higher resolution version, are the main reason
    for producing such an effect. For a more realistic coastline,
    satellite passive-microwave data for fine-grid land/ice-shelf ?????? seaice/
    ocean boundary were used.
    With a further enhancement of the resolution of the Southern Ocean??????s
    sea-ice component, a grid spacing of 22 km is reached. This is about
    the size of the pixel resolution of satellite-passive microwave data
    from which ice concentration is retrieved. This product is used in
    this study to validate the sea-ice component of the global ocean GCM.
    The overall performance of the high-resolution sea-ice component is
    encouraging, particularly the representation of the crucial coastal polynyas. Enhancing the resolution of the convection parameterization
    reduces spurious coarse-grid polynyas. Constraining the upper-ocean
    temperature and modifying the plume velocity removes unrealistic
    small-scale convection within the ice pack. The observed highfrequency
    variability along the ice edge is to some extent captured
    by exposing the ice pack to upper-ocean currents that mimic tidal
    variability. While these measures improve several characteristics of
    the Southern Ocean sea-ice pack, they deteriorate the global deepocean
    properties and circulation, calling for further refinements and
    tuning to arrive at presently observed conditions.

publication date

  • May 2003