On a variant of the Maxwell and Oldroyd-B models within the context of a thermodynamic basis Academic Article uri icon

abstract

  • 2015 Elsevier Ltd. All rights reserved. In this paper we develop models within a thermodynamic standpoint that are very similar in form to the classical Maxwell and Oldroyd-B models but differ from them in one important aspect, the manner in which they unload instantaneously from the deformed configuration. As long as the response is not instantaneous, the models that are derived cannot be differentiated from the Maxwell and Oldroyd-B models, respectively. The models can be viewed within the context of materials whose natural configuration evolves, the evolution being determined by the maximization of the rate of entropy production of the material. However, the underpinnings to develop the model are quite different from an earlier development by Rajagopal and Srinivasa [8] in that while the total response of the viscoelastic fluid satisfies the constraint of an incompressible material, the energy storage mechanism associated with the elastic response is allowed to be that for a compressible elastic solid and the dissipative mechanism associated with the viscous response allowed to be that for a compressible fluid, the total deformation however being isochoric. The analysis calls for a careful evaluation of firmly held customs in viscoelasticity wherein it is assumed that it is possible to subject a material to a purely instantaneous elastic response without any dissipation whatsoever. Finally, while the model developed by Rajagopal and Srinivasa [8] arises from the linearization of the non-linear elastic response that they chose and leads to a model wherein the instantaneous elastic response is isochoric, here we develop the model within the context of a different non-linear elastic response that need not be linearized but the instantaneous elastic response not necessarily being isochoric.

published proceedings

  • INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS

author list (cited authors)

  • Malek, J., Rajagopal, K. R., & Tuma, K.

citation count

  • 31

complete list of authors

  • Málek, J||Rajagopal, KR||Tůma, K

publication date

  • November 2015