Time-Dependent Systematic Biases in Inferring Ice Cloud Properties from Geostationary Satellite Observations Academic Article uri icon


  • Geostationary satellite-based remote sensing is a powerful tool to observe and understand the spatiotemporal variation of cloud optical-microphysical properties and their climatologies. Solar reflectances measured from the Advanced Baseline Imager (ABI) instruments aboard Geostationary Operational Environmental Satellites 16 and 17 correspond to different spatial pixel resolutions, from 0.5 km in a visible band, up to 2 km in infrared bands. For multi-band retrievals of cloud properties, reflectances with finer spatial resolution need to be resampled (averaged or sub-sampled) to match the coarsest resolution. Averaging all small pixels within a larger pixel footprint is more accurate but computationally demanding when the data volume is large. Thus, NOAA operational cloud products incorporate sub-sampling (selecting one high-resolution pixel) to resample the reflectance data, which could cause potential retrieval biases. In this study, we examine various error sources of retrieval biases of cloud optical thickness (COT) and cloud effective radius (CER) caused by sub-sampling, including the solar zenith angle, viewing zenith angle, pixel resolutions, and cloud types. CER retrievals from ice clouds based on sub-sampling have larger biases and uncertainties than COT retrievals. The relative error compared to pixel averaging is positive for clouds that have small COT or CER, and negative for clouds that have large COT or CER. The relative error of COT decreases as the pixel resolution becomes coarser. The COT retrieval biases are attributed mainly to cirrus and cirrostratus clouds, while the largest biases of CER retrievals are associated with cirrus clouds.

published proceedings


altmetric score

  • 2.5

author list (cited authors)

  • Li, D., Saito, M., & Yang, P.

citation count

  • 0

complete list of authors

  • Li, Dongchen||Saito, Masanori||Yang, Ping

publication date

  • 2023