Modal wavefront reconstruction in radial shearing interferometry with general aperture shapes.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Wavefront reconstruction in radial shearing interferometry with general aperture shapes is challenging because the problem may be ill-conditioned. Here we propose a Gram-Schmidt orthogonalization method to cope with off-axis wavefront reconstruction with any aperture type. The proposed method constructs a set of orthogonal basis functions and computes the corresponding expansion coefficients, which are converted into another set of expansion coefficients to reproduce the original wavefront. The method can effectively alleviate the ill-conditioning of the problem, and is numerically stable compared with the classic least-squares method, especially for non-circular apertures and in the presence of noise. Computer simulation and experimental results are presented to demonstrate the performance of the algorithm.