Two-frame phase-shifting interferometry for testing optical surfaces.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Standard phase-shifting interferometry (PSI) generally requires collecting at least three phase-shifted interferograms to extract the physical quantity being measured. Here, we propose the application of a simple two-frame PSI for the testing of a range of optical surfaces, including flats, spheres, and aspheres. The two-frame PSI extracts modulated phase from two randomly phase-shifted interferograms using a Gram-Schmidt algorithm, and can work in either null testing or non-null testing modes. Since only two interferograms are used for phase demodulation and the phase shift amount can be random, requirements on environmental conditions and phase shifter calibration are greatly relaxed. Experimental results of three different mirrors suggest that the two-frame PSI can achieve comparable measurement precision with conventional multi-frame PSI, but has faster data acquisition speed and less stringent hardware requirements. The proposed two-frame PSI expands the flexibility of PSI and holds great potential in many applications.