Floquet isospectrality for periodic graph operators Institutional Repository Document uri icon

abstract

  • Let $Gamma=q_1mathbb{Z}oplus q_2 mathbb{Z}opluscdotsoplus q_dmathbb{Z}$ with arbitrary positive integers $q_l$, $l=1,2,cdots,d$. Let $Delta_{
    m discrete}+V$ be the discrete Schr"odinger operator on $mathbb{Z}^d$, where $Delta_{
    m discrete}$ is the discrete Laplacian on $mathbb{Z}^d$ and the function $V:mathbb{Z}^d o mathbb{C}$ is $Gamma$-periodic. We prove two rigidity theorems for discrete periodic Schr"odinger operators: (1) If real-valued $Gamma$-periodic functions $V$ and $Y$ satisfy $Delta_{
    m discrete}+V$ and $Delta_{
    m discrete}+Y$ are Floquet isospectral and $Y$ is separable, then $V$ is separable. (2) If complex-valued $Gamma$-periodic functions $V$ and $Y$ satisfy $Delta_{
    m discrete}+V$ and $Delta_{
    m discrete}+Y$ are Floquet isospectral, and both $V=\bigoplus_{j=1}^rV_j$ and $Y=\bigoplus_{j=1}^r Y_j$ are separable functions, then, up to a constant, lower dimensional decompositions $V_j$ and $Y_j$ are Floquet isospectral, $j=1,2,cdots,r$. Our theorems extend the results of Kappeler. Our approach is developed from the author's recent work on Fermi isospectrality and can be applied to study more general lattices.

author list (cited authors)

  • Liu, W.

citation count

  • 0

complete list of authors

  • Liu, Wencai

Book Title

  • arXiv

publication date

  • February 2023