ROTORDYNAMIC FORCE COEFFICIENTS OF A HYBRID BRUSH SEAL: MEASUREMENTS AND PREDICTIONS Conference Paper uri icon

abstract

  • Brush seals effectively control leakage in air breathing engines, albeit only applied for relatively low-pressure differentials. Hybrid brush seals (HBS) are an alternative to resolve poor reliability resulting from bristle tip wear while also allowing for reverse shaft rotation operation. A HBS incorporates pads contacting the shaft on assembly; and which under rotor spinning, lift off due to the generation of a hydrodynamic pressure. The ensuing gas film prevents intermittent contact, reducing wear and thermal distortions. The paper presents rotordynamic measurements conducted on a test rig for evaluation of HBS technology. Single frequency shaker loads are exerted on a test rotor holding a hybrid brush seal and measurements of rotor displacements follow for operating conditions with increasing gas supply pressures and two rotor speeds. A frequency domain identification method delivers the test system stiffness and damping coefficients. The HBS stiffness coefficients are not affected by rotor speed though the seal viscous damping shows a strong frequency dependency. The identified HBS direct stiffness decreases 15% as the supply/discharge pressure increases Pr = 1.7 to 2.4. The HBS cross-coupled stiffnesses are insignificant, at least one order of magnitude smaller than the direct stiffnesses. A structural loss factor () and dry friction coefficient () represent the energy dissipated in a HBS by the bristle-to-bristle and bristle-to-pads interactions. Predictions of HBS stiffness and damping coefficients correlate well with the test derived parameters. Both model predictions and test results show the dramatic reduction of the seal equivalent viscous damping coefficients as the excitation whirl frequency increases.

name of conference

  • Volume 6: Structures and Dynamics, Parts A and B

published proceedings

  • PROCEEDINGS OF THE ASME TURBO EXPO 2009, VOL 6, PTS A AND B

author list (cited authors)

  • San Andres, L., Delgado, A., & Baker, J.

citation count

  • 0

complete list of authors

  • San Andres, Luis||Delgado, Adolfo||Baker, Jose

publication date

  • January 2009