A Bulk-Flow Model of Angled Injection Lomakin Bearings Academic Article uri icon

abstract

  • This paper introduces a bulk-flow model for prediction of the static and dynamic force coefficients of angled injection Lomakin bearings. The analysis accounts for the flow interaction between the injection orifices, the supply circumferential groove, and the thin film lands. A one control-volume model in the groove is coupled to a bulk-flow model within the film lands of the bearing. Bernoulli-type relationships provide closure at the flow interfaces. Flow turbulence is accounted for with shear stress parameters and Moody's friction factors. The flow equations are solved numerically using a robust computational method. Comparisons between predictions and experimental results for a tangential-against-rotation injection water Lomakin bearing show that novel model well predicts the leakage and direct stiffness and damping coefficients. Computed crosscoupled stiffness coefficients follow the experimental trends for increasing rotor speeds and supply pressures, but quantitative agreement remains poor. A parameter investigation shows evidence of the effects of the groove and land geometries on the Lomakin bearing flowrate and force coefficients. The orifice injection angle does not influence the bearing static performance, although it largely affects its stability characteristics through the evolution of the cross-coupled stiffnesses. The predictions confirm the promising stabilizing effect of the tangential-against-rotation injection configuration. Two design parameters, comprised of the feed orifices area and groove geometry, define the static and dynamic performance of Lomakin bearing. The analysis also shows that the film land clearance and length have a larger impact on the Lomakin bearing rotordynamic behavior than its groove depth and length. Copyright © 2007 by ASME.

author list (cited authors)

  • Andrés, L. S., Soulas, T., & Fayolle, P.

citation count

  • 0

publication date

  • March 2002