Microbubble generation by microplasma in water Academic Article uri icon


  • A microscale plasma and a spherical microscale bubble were generated by the application of a single pulsed discharge in water with no pre-existing bubble. The microscale corona discharges were created at the tip of a microelectrode by applying a voltage at around -11kV with a rise time of around 20ns. The energy inputs for microplasma generation were controlled by varying the durations of the discharges from nanoseconds to microseconds. Two different energy inputs of 103 and 0.5mJ were studied in detail and the differences in the microplasma-generated microbubbles, such as the maximum radii, numbers of oscillations and durations of the bubble were observed. These microbubbles were visualized using a microscope based optical system with two different high speed cameras. Images of the discharges were captured by a nanosecond gated intensified charge-coupled device (CCD) camera, and the microbubbles' dynamics were recorded by a million-frame-per-second CCD video camera. A Rayleigh-Plesset (RP) model considering both condensable (water vapour) and incondensable (H2 and O2) gases in the microbubble predicts the bubbles' dynamics accurately. Comparisons of the experimental results and the RP models allow estimation of the thermodynamic states of the microplasmas and microbubbles. The energies in the microbubbles are analysed quantitatively from the model and rough approximations for energy dissipation and the energy of the microplasma are made. The microplasma energy can be significantly less than the applied energy input. Such low initiation energy is the reason that the size of microplasmas is at the micron scale and all microplasmas are confined in a spherical microbubble. All the microbubbles reported in this paper are spherical. The low energy also provides conditions for non-equilibrium plasmas in liquid. 2014 IOP Publishing Ltd.

published proceedings


author list (cited authors)

  • Xiao, P., & Staack, D.

citation count

  • 17

complete list of authors

  • Xiao, Peng||Staack, David

publication date

  • August 2014