Control of geometrical properties of carbon nanotube electrodes towards high-performance microbial fuel cells Academic Article uri icon

abstract

  • 2015 Elsevier B.V. All rights reserved. In microbial fuel cells (MFCs), physical and electrochemical interactions between microbes and electrode surfaces are critical to performance. Nanomaterial-based electrodes have shown promising performances, however their unique characteristics have not been fully utilized. The developed electrodes here consist of multi-wall carbon nanotubes (MWCNTs) directly grown in the radial direction from the wires of stainless steel (SS) meshes, providing extremely large three-dimensional surfaces while ensuring minimal ohmic loss between CNTs and SS meshes, fully utilizing the advantages of CNTs. Systematic studies on how different lengths, packing densities, and surface conditions of CNTs affect MFC power output revealed that long and loosely packed CNTs without any amorphous carbon show the highest power production performance. The power density of this anode is 7.4-fold higher compared to bare carbon cloth, which is the highest reported improvement for MFCs with nanomaterial-decorated electrodes. The results of this study offer great potential for advancing the development of microbial electrochemical systems by providing a highly efficient nanomaterial-based electrode that delivers large surface area, high electrochemical activity, and minimum ohmic loss, as well as provide design principles for next-generation nanomaterial-based electrodes that can be broadly applicable for highly efficient microbial electrochemical cells.

published proceedings

  • JOURNAL OF POWER SOURCES

author list (cited authors)

  • Erbay, C., Pu, X., Choi, W., Choi, M., Ryu, Y., Hou, H., ... Han, A.

citation count

  • 65

complete list of authors

  • Erbay, Celal||Pu, Xiong||Choi, Woongchul||Choi, Mi-Jin||Ryu, Yeontack||Hou, Huijie||Lin, Furong||de Figueiredo, Paul||Yu, Choongho||Han, Arum

publication date

  • January 2015