Pieri-type formulas for maximal isotropic Grassmannians via triple intersections
Institutional Repository Document
Overview
Research
View All
Overview
abstract
We give an elementary proof of the Pieri-type formula in the cohomology of a Grassmannian of maximal isotropic subspaces of an odd orthogonal or symplectic vector space. This proof proceeds by explicitly computing a triple intersection of Schubert varieties. The decisive step is an explicit description of the intersection of two Schubert varieties, from which the multiplicities (which are powers of 2) in the Pieri-type formula are deduced.