Degenerations of real irrational toric varieties
Institutional Repository Document
Overview
Research
Identity
Other
View All
Overview
abstract
An irrational toric variety X is an analytic subset of the simplex associated to a finite configuration of real vectors. The positive torus acts on X by translation, and we consider limits of sequences of these translations. Our main result identifies all possible Hausdorff limits of translations of X as toric degenerations using elementary methods and the geometry of the secondary fan of the vector configuration. This generalizes work of Garcia-Puente et al., who used algebraic geometry and work of Kapranov, Sturmfels, and Zelevinsky, when the vectors were integral.