Differential Contributions of Pre- and Post-EMT Tumor Cells in Breast Cancer Metastasis. Academic Article uri icon

abstract

  • Metastases are responsible for the majority of breast cancer-associated deaths. The contribution of epithelial-to-mesenchymal transition (EMT) in the establishment of metastases is still controversial. To obtain in vivo evidence of EMT in metastasis, we established an EMT lineage tracing (Tri-PyMT) model, in which tumor cells undergoing EMT would irreversibly switch their fluorescent marker from RFP+ to GFP+ due to mesenchymal-specific Cre expression. Surprisingly, we found that lung metastases were predominantly derived from the epithelial compartment of breast tumors. However, concerns were raised on the fidelity and sensitivity of RFP-to-GFP switch of this model in reporting EMT of metastatic tumor cells. Here, we evaluated Tri-PyMT cells at the single-cell level using single-cell RNA-sequencing and found that the Tri-PyMT cells exhibited a spectrum of EMT phenotypes, with EMT-related genes concomitantly expressed with the activation of GFP. The fluorescent color switch in these cells precisely marked an unequivocal change in EMT status, defining the pre-EMT and post-EMT compartments within the tumor. Consistently, the pre-EMT cells played dominant roles in metastasis, while the post-EMT cells were supportive in promoting tumor invasion and angiogenesis. Importantly, the post-EMT (GFP+) cells in the Tri-PyMT model were not permanently committed to the mesenchymal phenotype; they were still capable of reverting to the epithelial phenotype and giving rise to secondary tumors, suggesting their persistent EMT plasticity. Our study addressed major concerns with the Tri-PyMT EMT lineage tracing model, which provides us with a powerful tool to investigate the dynamic EMT process in tumor biology. SIGNIFICANCE: These findings confirm the fidelity and sensitivity of the EMT lineage tracing (Tri-PyMT) model and highlight the differential contributions of pre- and post-EMT tumor cells in breast cancer metastasis.See related commentary by Bunz, p. 153.

published proceedings

  • Cancer Res

altmetric score

  • 8.95

author list (cited authors)

  • Lourenco, A. R., Ban, Y. i., Crowley, M. J., Lee, S. B., Ramchandani, D., Du, W., ... Gao, D.

citation count

  • 54

complete list of authors

  • Lourenco, Ana Rita||Ban, Yi||Crowley, Michael J||Lee, Sharrell B||Ramchandani, Divya||Du, Wei||Elemento, Olivier||George, Jason T||Jolly, Mohit Kumar||Levine, Herbert||Sheng, Jianting||Wong, Stephen T||Altorki, Nasser K||Gao, Dingcheng

publication date

  • January 2020