Heat transfer coefficient on the squealer tip and near squealer tip regions of a gas turbine blade Conference Paper uri icon

abstract

  • Detailed heat transfer coefficient distributions on a squealer tip of a gas turbine blade were measured using a hue detection based transient liquid crystals technique. The heat transfer coefficients on the shroud and near tip region of the pressure and suction sides of a blade were also measured. Tests were performed on a five-bladed linear cascade with blow down facility. The blade was a 2-dimensional model of a first stage gas turbine rotor blade with a profile of a GE-E3 aircraft gas turbine engine rotor blade. The Reynolds number based on the cascade exit velocity and axial chord length of a blade was 1.1106 and the total turning angle of the blade was 97.7. The overall pressure ratio was 1.23 and the inlet and exit Mach number were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. The heat transfer measurements were taken at the three different tip gap clearances of 1.0%, 1.5% and 2.5% of blade span. Results showed that the overall heat transfer coefficient on the squealer tip was higher than that on the shroud and the near tip region of the pressure and suction side. Results also showed that the heat transfer coefficients on the squealer tip and its shroud were lower than that on the plane tip and shroud, but the heat transfer coefficients on the near tip region of suction and pressure sides were higher for the squealer tip case. Copyright 2002 by ASME.

published proceedings

  • ASME International Mechanical Engineering Congress and Exposition, Proceedings

author list (cited authors)

  • Kwak, J. S., & Han, J. C.

citation count

  • 9

complete list of authors

  • Kwak, JS||Han, JC

publication date

  • January 2002