Heat transfer coefficients on the squealer tip and near squealer tip regions of a gas turbine blade Academic Article uri icon

abstract

  • Detailed heat transfer coefficient distributions on a squealer tip of a gas turbine blade were measured using a hue detection based transient liquid crystals technique. The heat transfer coefficients on the shroud and near tip regions of the pressure and suction sides of a blade were also measured. Tests were performed on a five-bladed linear cascade with a blow-down facility. The blade was a two-dimensional model of a first stage gas turbine rotor blade with a profile of a GE-E3 aircraft gas turbine engine rotor blade. The Reynolds number based on the cascade exit velocity and axial chord length of a blade was 1.1106 and the total turning angle of the blade was 97.7 deg. The overall pressure ratio was 1.2 and the inlet and exit Mach number were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7 percent. The heat transfer measurements were taken at the three different tip gap clearances of 1.0 percent, 1.5 percent, and 2.5 percent of blade span. Results showed that the overall heat transfer coefficients on the squealer tip were higher than that on the shroud surface and the near tip regions of the pressure and suction sides. Results also showed that the heat transfer coefficients on the squealer tip and its shroud were lower than that on the plane tip and shroud. However, the reductions of heat transfer coefficients near the tip regions of the pressure and suction sides were not remarkable.

published proceedings

  • JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME

author list (cited authors)

  • Kwak, J. S., & Han, J. C.

citation count

  • 63

complete list of authors

  • Kwak, JS||Han, JC

publication date

  • August 2003