Turbine blade cooling studies at Texas A&M University: 1980-2004 Academic Article uri icon


  • Gas turbines are used extensively for aircraft propulsion, land-based power generation, and industrial applications. Developments in turbine cooling technology play a critical role in increasing the thermal efficiency and power output of advanced high-temperature gas turbine engines. Gas turbine blades are cooled internally by passing the coolant through several rib-enhanced serpentine passages to remove heat conducted from the outside surface. External cooling of turbine blades by film cooling is achieved by injecting relatively cooler air from the internal coolant passages out of the blade surface to form a protective layer between the blade surface and hot gas-path flow. The most important research contributions on turbine blade cooling studies at Texas A&M University's Turbine Heat Transfer Laboratory from 1980 to 2004 are summarized. For turbine blade internal cooling, the focus is on the effect of rotation on rotor blade coolant passage heat transfer with rib turbulators, pin fins, dimples, and impinging jets. For turbine blade external cooling, the focus is on unsteady high freestream turbulence effects on film-cooling performance with a special emphasis on turbine blade edge region heat transfer and cooling problems. Copyright 2005 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

published proceedings


author list (cited authors)

  • Han, J. C.

citation count

  • 79

complete list of authors

  • Han, JC

publication date

  • April 2006