A HIGHER-ORDER BEAM FINITE-ELEMENT FOR BENDING AND VIBRATION PROBLEMS
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The finite element equations for a variationally consistent higher order beam theory are presented for the static and dynamic behavior of rectangular beams. The higher order theory correctly accounts for the stress-free conditions on the upper and lower surfaces of the beam while retaining the parabolic shear strain distribution. The need for a shear correction coefficient is therefore eliminated. Full integration of the shear stiffness terms is shown to result in the recovery of the Kirchhoff constraint for thin beams without introducing spurious locking constraints. The accuracy of this formulation is demonstrated by using several numerical examples for the cases of small and large displacements. For a hinged-hinged beam, the linear thickness-shear mode frequency can be matched with the Timoshenko frequency to yield a shear coefficient of 0824. Matching the bending frequencies between the two theories indicates a shear coefficient for the Timoshenko theory that changes with mode number and slenderness ratio. The influence of in-plane inertia and slenderness ratio on the non-linear frequency is examined for beams with a number of different support conditions. 1988.