On vibration and buckling of symmetric laminated plates according to shear deformation theories
Academic Article
Overview
Identity
Additional Document Info
View All
Overview
abstract
The frequency and buckling equations of rectangular plates with various boundary conditions are developed within the third-order and the first-order shear deformation plate theories. The third-order theories account for a quadratic distribution of the transverse shear strains through the thickness of the plate. In the first part of this paper, Levinson's third-order theory, derived as a special case from Reddy's third-order theory, is used to study a plate laminated of transversely isotropic layers. The relationship between the original form of the governing equations and the interior and the edge-zone equations of the plate is closely examined and the physical insights from the latter equations are established. In the second part of the paper, the first-order shear deformation theory and the third-order theory of Reddy are studied for vibration and buckling. 1992 Springer-Verlag.