Anderson localization for the completely resonant phases Institutional Repository Document uri icon

abstract

  • For the almost Mathieu operator $ (H_{lambda,alpha, heta}u) (n)=u(n+1)+u(n-1)+ lambda v( heta+nalpha)u(n)$, Avila and Jitomirskaya guess that for every phase $ heta in mathscr{R} riangleq{ hetain mathbb{R};| ; 2 heta + alpha mathbb{Z} in mathbb{Z}}$, $H_{lambda,alpha, heta}$ satisfies Anderson localization if $ |lambda| > e^{ 2 \beta}$. In the present paper, we show that for every phase $ heta in mathscr{R} $, $H_{lambda,alpha, heta}$ satisfies Anderson localization if $ |lambda| > e^{ 7 \beta}$.

author list (cited authors)

  • Liu, W., & Yuan, X.

citation count

  • 0

complete list of authors

  • Liu, Wencai||Yuan, Xiaoping

Book Title

  • arXiv

publication date

  • November 2013