Anderson Localization for the Almost Mathieu Operator in Exponential Regime Institutional Repository Document uri icon

abstract

  • For the almost Mathieu operator $(H_{lambda,alpha, heta}u)_n=u_{n+1}+u_{n-1}+2lambda cos2pi( heta+nalpha)u_n$, Avila and Jitomirskaya guess that for a.e. $ heta$, $H_{lambda,alpha, heta}$ satisfies Anderson localization if $ |lambda| > e^{ \beta} $, and they establish this for $ |lambda| > e^{frac{16}{9} \beta}$. In the present paper, we extend their result to regime $ |lambda| > e^{frac{3}{2} \beta}$.

author list (cited authors)

  • Liu, W., & Yuan, X.

citation count

  • 0

complete list of authors

  • Liu, Wencai||Yuan, Xiaoping

Book Title

  • arXiv

publication date

  • November 2013