Continuous quasiperiodic Schrdinger operators with Gordon type potentials Institutional Repository Document uri icon

abstract

  • Let us concern the quasi-periodic Schr"odinger operator in the continuous case, \begin{equation*} (Hy)(x)=-y^{primeprime}(x)+V(x,omega x)y(x), end{equation*} where $V:(R/)^2 o R$ is piecewisely $gamma$-H"older continuous with respect to the second variable. Let $L(E)$ be the Lyapunov exponent of $Hy=Ey$. Define $\beta(omega)$ as \begin{equation*} \beta(omega)= limsup_{k o infty}frac{-ln ||komega||}{k}. end{equation*} We prove that $H$ admits no eigenvalue in regime ${EinR:L(E)

author list (cited authors)

  • Liu, W.

citation count

  • 0

complete list of authors

  • Liu, Wencai

Book Title

  • arXiv

publication date

  • September 2017