Small denominators and large numerators of quasiperiodic Schrdinger operators
Institutional Repository Document
Overview
Research
Identity
View All
Overview
abstract
We initiate an approach to simultaneously treat numerators and denominators of Green's functions arising from quasi-periodic Schr"odinger operators, which in particular allows us to study completely resonant phases of the almost Mathieu operator. Let $ (H_{lambda,alpha, heta}u) (n)=u(n+1)+u(n-1)+ 2lambda cos2pi( heta+nalpha)u(n)$ be the almost Mathieu operator on $ell^2(mathbb{Z})$, where $lambda, alpha, hetain mathbb{R}$. Let $$ \beta(alpha)=limsup_{k ightarrow infty}-frac{ln ||kalpha||_{mathbb{R}/mathbb{Z}}}{|k|}.$$ We prove that for any $ heta$ with $2 hetain alpha mathbb{Z}+mathbb{Z}$, $H_{lambda,alpha, heta}$ satisfies Anderson localization if $|lambda|>e^{2\beta(alpha)}$. This confirms a conjecture of Avila and Jitomirskaya [The Ten Martini Problem. Ann. of Math. (2) 170 (2009), no. 1, 303--342] and a particular case of a conjecture of Jitomirskaya [Almost everything about the almost Mathieu operator. II. XIth International Congress of Mathematical Physics (Paris, 1994), 373--382, Int. Press, Cambridge, MA, 1995].