Performance of piezoelectric fiber-reinforced composites for active structural-acoustic control of laminated composite plates Academic Article uri icon

abstract

  • This paper deals with the active structural acoustic control of thin laminated composite plates using piezoelectric fiber-reinforced composite (PFRC) material for the constraining layer of active constrained layer damping (ACLD) treatment. A finite element model is developed for the laminated composite plates integrated with the patches of ACLD treatment to describe the coupled structural-acoustic behavior of the plates enclosing an acoustic cavity. The performance of the PFRC layers of the patches has been investigated for active control of sound radiated from thin symmetric and antisymmetric cross-ply and antisymmetric angle-ply laminated composite plates into the acoustic cavity. The significant effect of variation of piezoelectric fiber orientation in the PFRC layer on controlling the structure-borne sound radiated from thin laminated plates has been investigated to determine the fiber angle in the PFRC layer for which the structural-acoustic control authority of the patches becomes maximum.

author list (cited authors)

  • Ray, M. C., & Reddy, J. N.

citation count

  • 13

publication date

  • November 2004